
SMART CONTRACTS EXPERTISE —
RIGHT WAY TO SUCCESS
MINTO audit report

If you have any questions concerning
smart contract design and audit, feel
free to contact audit@mywish.io

2mywish.io \ audit@mywish.io

Сontent

1. Overview

1.1 Terms of Reference for the creation of a
smart contract
1.1.1 Contract details

2. Introduction

2.1 Authenticity

2.2 Scope

2.3 Methodology

2.4 Description of the complex of procedures
for reviewing the smart contract

2.5 Risk Assessment

2.6 Disclaimer

3. Findings

3.1 Critical Severity

3.2 High Severity

3.3 Medium Severity

3.4 Low Severity

4. Documents and Resources

4.1 References

5. Conclusion

3

3

3

4

4

4

4

5

5

6

6

6

6

6

7

9

9

9

3mywish.io \ audit@mywish.io

MINTO team asked us to perform a review of their contract. We performed a review of
their code from and published this document as a write-up of our findings.

• Minto staking contract with reinvestment.

• Users who own BTCMT token can make deposits to the contract and receive
rewards also in BTCMT token. The reward is paid by certain addresses (back)
daily (no more than once a day) and distributed by contract between users in
accordance with their shares from the total pool of deposits.

• For each user, the HBTC reward is immediately reinvested, i.e. added to his
already existing stake

• Also, the contract has a disabled / enabled bonus system, which works as
follows:

• let variable bonusStatus == (true, [10,15,20,30,40], [10, 20 , 30, 50]);

• This means that the bonus system is active (true) and as soon as the user
holds his stake for 10 days or more (bonusStatus.day[0] == 10), he will start
receiving bonuses (first 1%, then 2, etc.; PS: DENOMINTOR == 1000)

• To receive a bonus means, when distributing a reward, to receive an additional
percentage of the due reward. So, if a user has staked for 10 days and on the
10th day he is entitled to a reward of n BTCMT, he will receive n + n/100.

1.1 Terms of Reference for the creation of a smart contract

1.1.1 Contract details:

1. Overview

1.1.2 Contract functions:

rewardTokenDonation allows an authorized address from the backend to make rewards,
which are converted from HBTC into BTCMT through the ex-
change and then written into the contract as a reward.

stake allows the users to stake tokens on the staking contract or in-
crease an existing stake.

unstake allows users to withdraw all or partly of their stake from the con-
tract in BTCMT tokens.

recalculate allows you to recalculate or reinvest the user’s reward in the con-
tract.

4mywish.io \ audit@mywish.io

setBonusVars allows the owner of the contract to change the status and param-
eters of the bonus program.

addBonusTokens allows the owner of the contract to deposit bonus tokens to the
balance of the contract.

withdrawBonusTokens allows the contract owner to withdraw bonus tokens from the
contract.

updateHistory allows anyone to update the history of bonuses in a contract.

setSlippage allows the owner of the contract to change the slippagePercent
from 10 to 1000 points.

addOrRemoveBack allows the owner of the contract to change the status of the au-
thorized address from the backend (add or remove it from the list
of addresses that can make a reward).

The contracts audited are a subset of the contracts compiled and deployed in Heco
blockchain.

2.1. Authenticity

2. Introduction

This audit was performed as a comprehensive review of the codebase and takes into
consideration both the Solidity code, as well as the target platform: Heco network. The
Solidity was reviewed not just for common vulnerabilities and antipatterns, but also for
its parity with the intent of the deployer, for its efficiency, and for the practices used
during development.

2.3. Methodology

The audit reviewed contract source code from hecoinfo.com Contracts were reviewed
in the context of the flattened file, which included solidity files. The review performed
did not assess any scripts, tests, or other non-Solidity files.

2.2. Scope

5mywish.io \ audit@mywish.io

2.4. Description of the complex of procedures for reviewing the
smart contract

• Checking the architecture of the contract.

• The correctness of the code.

• Check for linearity, shortness, and self-documentation.

• Static verification and code analysis for validity and the presence of syntactic
errors.

2.4.1 Primary architecture review

• Checking the code of the smart contract for compliance with the requirements of
the customer code logic, writing algorithms, matching the initial constant values.

• Identification of potential vulnerabilities

2.4.2 Comparison of requirements and implementation

Findings were categorized using a risk rating model based on the OWASP method.
Each vulnerability takes into consideration the impact and likelihood of exploitation,
as well as the relative ease with which the vulnerability is resolved; findings that
permeate throughout the codebase will require much more review and work to solve
and are rated higher as a result.

To standardize the evaluation, we define the following terminology based on OWASP
Risk Rating Methodology:

• Likelihood represents how likely a particular vulnerability is to be uncovered and
exploited in the wild;

2.5. Risk Assessment

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium
and low respectively. Severity is determined by likelihood and impact and can be
classified into four categories accordingly, i.e., Critical, High, Medium, Low shown in
following Table

6mywish.io \ audit@mywish.io

Table: Vulnerability Severity Classification

Likelihood

im
p
a
c
t

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

This document reflects the understanding of security flaws and vulnerabilities as they
are known to MyWish, and as they relate to the reviewed project. This document
makes no statements on the viability of the project or the safety of its code. This audit
does not represent investment advice and should not be interpreted as such.

2.6. Disclaimer

No critical-severity vulnerabilities were found.

No high-severity vulnerabilities were found.

3.1. Critical Severity

3.2. High Severity

3. Findings

3.3. Medium Severity

No medium-severity vulnerabilities were found3.3.1.

7mywish.io \ audit@mywish.io

Function: rewardTokenDonation()

Lines: - 121

Function: stake()

Lines: - 163-165, 203-211, 217

Function: updateHistory()

Lines: - 327

3.4. Low Severity

Issue description: Approve to the router happens every day

Recommendations: Check if there is enough allowance and increase if
necessary or create external function that would approve tokens to the router.

Issue description: Using self realization of set.

Recommendations: Consider using OpenZeppelin EnumrableSet for address
type.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/
contracts/utils/structs/EnumerableSet.sol#L214

With this you can use convenient and save .length() .add() .remove() methods

Issue description: Lack of event.

Recommendations: Please consider adding an event after changing global
bonusStatus.

3.4.1

3.4.2

3.4.3

Function: setBonusVars()

Lines: - 250

Issue description: Lack of event.

Recommendations: Please consider adding an event after changing global
bonusStatus.

3.4.4

8mywish.io \ audit@mywish.io

Function: updateHistory()

Lines: - 321

Function: addOrRemoveBack()

Lines: - 314

Function: setSlippage()

Lines: - 305

Issue description: Lack of event.

Recommendations: Please consider adding an event after the for loop with
indication of updated time period and new values.

Issue description: Lack of event.

Recommendations: Please consider adding an event about addition or removal
of can-deposit status.

Issue description: Lack of event.

Recommendations: Please consider adding an event containing new slippage
value

3.4.5

3.4.6

3.4.7

9mywish.io \ audit@mywish.io

4. Documents and Resources

5. Conclusion

4.1. References

Deployed contract: https://hecoinfo.com/
address/0xe742FCE58484FF7be7835D95E350c23CE55A7E12

OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_
Rating_Methodology

The information in this review is a list of recommendations on what needs to be
done to ensure the quality and security of the smart contract. The MyWish experts
conducted the verification of the smart contract. Based on the results of the reviewing
and testing, it is established that the token smart contract complies with the
specifications specified in the terms of reference.

During the reviewing and testing of the contracts, critical errors and possible
vulnerabilities were not detected so the contract is ready to be used in HECO and
BSC blockchains. Outside of the included notes, the code reviewed was simple and
clean. The formatting, naming, and other conventions used were fairly regular, and the
inheritance structure was well-organized, resulting in a codebase that was easier to
review. audit@mywish.io

